Inositol phosphatase SHIP1 is a primary target of miR-155.
نویسندگان
چکیده
MicroRNA-155 (miR-155) has emerged as a critical regulator of immune cell development, function, and disease. However, the mechanistic basis for its impact on the hematopoietic system remains largely unresolved. Because miRNAs function by repressing specific mRNAs through direct 3'UTR interactions, we have searched for targets of miR-155 implicated in the regulation of hematopoiesis. In the present study, we identify Src homology-2 domain-containing inositol 5-phosphatase 1 (SHIP1) as a direct target of miR-155, and, using gain and loss of function approaches, show that miR-155 represses SHIP1 through direct 3'UTR interactions that have been highly conserved throughout evolution. Repression of endogenous SHIP1 by miR-155 occurred following sustained over-expression of miR-155 in hematopoietic cells both in vitro and in vivo, and resulted in increased activation of the kinase Akt during the cellular response to LPS. Furthermore, SHIP1 was also repressed by physiologically regulated miR-155, which was observed in LPS-treated WT versus miR-155(-/-) primary macrophages. In mice, specific knockdown of SHIP1 in the hematopoietic system following retroviral delivery of a miR-155-formatted siRNA against SHIP1 resulted in a myeloproliferative disorder, with striking similarities to that observed in miR-155-expressing mice. Our study unveils a molecular link between miR-155 and SHIP1 and provides evidence that repression of SHIP1 is an important component of miR-155 biology.
منابع مشابه
SHIP1 is targeted by miR-155 in acute myeloid leukemia.
The SH2 domain-containing inositol 5'-phosphatase 1 (SHIP1) has been implicated as a suppressor of hematopoietic transformation as its activity can inhibit the PI3K/Akt signaling pathway. Reduced activity of SHIP1 has been observed in acute myeloid leukemia (AML). SHIP1 is a target of microRNA-155 (miR-155). Therefore, the aim of the present study was to investigate the role of miR-155/SHIP1 in...
متن کاملOnco-miR-155 targets SHIP1 to promote TNFα-dependent growth of B cell lymphomas
Non-coding microRNAs (miRs) are a vital component of post-transcriptional modulation of protein expression and, like coding mRNAs harbour oncogenic properties. However, the mechanisms governing miR expression and the identity of the affected transcripts remain poorly understood. Here we identify the inositol phosphatase SHIP1 as a bonafide target of the oncogenic miR-155. We demonstrate that in...
متن کاملTargeting src Homology 2-Containing Inositol Phosphatase-1 (SHIP1)
25 MicroRNAs (miRNAs) are single stranded small RNA molecules that regulate various cellular 26 processes. miR-155 regulates various aspects of innate and adaptive immune response and plays 27 a key role in various viral infections and resulting neuroinflammation. In the present study, 28 evaluated the involvement of miR-155 in modulating Japanese Encephalitis Virus (JEV)29 induced neuroinflamm...
متن کاملCRISPR/CAS9-Mediated Genome Editing of miRNA-155 Inhibits Proinflammatory Cytokine Production by RAW264.7 Cells
MicroRNA 155 (miR-155) is a key proinflammatory regulator in clinical and experimental rheumatoid arthritis (RA). Here we generated a miR-155 genome knockout (GKO) RAW264.7 macrophage cell line using the clustered regulatory interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (CAS9) technology. While upregulating the Src homology-2 domain-containing inositol 5-phosphatase ...
متن کاملMiR-155/miR-150 network regulates progression through the disease phases of chronic lymphocytic leukemia
Chronic lymphocytic leukemia (CLL) is a slowly developing progression-prone disease. MicroRNAs miR-155 and miR-150 are small inhibitors of gene expression in B-cells that were previously connected to the pathogenesis of CLL. We herein evaluated relationship of miR-155/miR-150 network with clinical and routine laboratory parameters of the CLL patient cohort utilizing multivariate analyses and fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 17 شماره
صفحات -
تاریخ انتشار 2009